Tillage and field scale controls on greenhouse gas emissions.

نویسندگان

  • Juhwan Lee
  • Johan Six
  • Amy P King
  • Chris van Kessel
  • Dennis E Rolston
چکیده

There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tillage effects on energy use and greenhouse gas emission in wheat-cotton rotation

Crop production process utilizes input energy and produces some biomass energy as output.  During this process, greenhouse gases (GHGs) are also emitted which can make environmental risks. In this study, input and output energies, energy indices, and GHG emissions arising from inputs were estimated for wheat-cotton rotation under different tillage practices in Fars province. The study was condu...

متن کامل

Integrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system

Wheat-corn cropping system is one of the most important grain production systems in theworld. However, the integrative impacts of soil tillage on crop yield, N use efficiency (NUE)and greenhouse gases (GHGS) emissions are not well documented in this system. Thus, a twoyear field experiment was carried out in a typical wheat-corn cropping system with four tillageregimes during the wheat season, ...

متن کامل

Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

J. Nat. Resour. Life Sci. Educ. 39:125–131 (2010). doi:10.4195/jnrlse.2009.0021 • http://www.JNRLSE.org © American Society of Agronomy 5585 Guilford Road, Madison, WI 53711 USA ABSTRACT Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultur...

متن کامل

Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain

Spain is one of the countries with the highest greenhouse gas (GHG) emissions within the EU-27. Consequently, mitigation strategies need to be reported and quantified to accomplish the goals and requirements of the Kyoto Protocol. In this study, a first estimation of the carbon (C) mitigation potential of tillage reduction in Mediterranean rainfed Spain is presented. Results from eight studies ...

متن کامل

The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2006